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ABSTRACT

This report presents a new procedure for predicting the motions'of
some ocean platforms in oblique waves. Frank's method of calculating
hydrodynamic forces and moments on oscillating cylinders is extended not
only to the calculation of hydrodynamic moment arms but also to the
calculation of wave-exciting forces and moments on a restrained ocean
platform in oblique waves. The coupled vertical and lateral equations of
motion are applied in determining the important motions of ocean-platform
models of the ship and jackup type, in oblique seas. The predictions are

in good agreement with the experimental results,

KEYYORDS
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NOMENCLATURE

waterplane area

wave amplitudé
beam or restoring coefficient

two-dimensional added mass coefficient

- force or moment

center of gravity or source potential
gravitational constant

moment of inertia of the hull about an axis through the center
of gravity

length of hull
hydrodynamic moment arm

moment or inertial coefficient

three-dimensional added mass
number of mode or sectional mass

two-dimensional added mass

two-dimensional or three-dimensional damping coefficient
origin of the coordinate system

hydrodynamic pressure |
source intensity

chord length

draft or period

time

amplitude of swaying velocity

amplitude of heaving velocity

ix
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Subscripts

f
H

Greek Letters

weight
space coordinates

body coordinates

suffix designating force or moment

half beam-to-draft ratio, or indicating heave in two-d
hydrodynamics

wave elevation, or suffix designating wave

V-1 , or suffix indicating the imaginary part or dampi
suffix indicating roll in two-dimensional hydrodynamic
suffix indicating the real part or inertial part

suffix in indicating swaying motion in two-dimensional
hydrodynamics

yaw, or suffix designating yawing motion or yaw-excit
moment

displacement
damping coefficient
phase difference

sway, or suffix designating swaying motion or swaying-
force

radius of gyration
tuning factor
wavelength

wave incidence
volume displacement

wave number

imenstonal

ng part

S

ing

rexciting
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amplitude of rolling an
hydrodynamics

circular frequency
velocity potential

velocity potential or r
motion or roll-exciting

pitch, or suffix design
momen t

water density

gular veloclity in two-dimenslon%l

oll, or suffix designating rolling.
moment

ating pitching motion or pitch-exciting

heave, or suffix designating heaving motion or heave-exciting :

force

xi




™3 T3 773

3 T8

~—3 ™3 3

—3 T3 ~—3% ~—T3 ~73 T3 T3 T3 T3

. Included in the study.

INTRODUCT | ON : \

During the past several years, a number of ocean platforms havL failed

‘structurally, and in many cases operations have had to be curtailed or

delayed because of loads or motions induced by ocean waves. MNow two years
of study at Stevens Institute, sponsored by the Sea Grant Program‘o# the
National Science Foundation, have led to the development of reliable
analytical techniques for studying platform motions during the desi‘n stage.
In the future, additional realistic mechanisms affecting platform mations
will be included in these analytical procedures so that a versatile,

useful prediction capability can be attained.

It is hoped that the use of these methods, in conducting studies at
the design stage, will make it possible to avoid operational delay and
failure. The results of the design studies should, moreover, prove useful
in evaluating the operational qualities of various designs, so that optimum

performance can be achieved,

Ocean platforms can be classified, operationally, with respect to the
effects induced by ocean waves. They fall into three main groups -- surfacé
platforms, semi-submersible platforms, and bottom-supported platforms like
the jackup drill rigs. This report is concerned with two subgroups of
surface platforms whose hull shapes may be described as conventional|ship
forms or as barges. It should be noted that before emplacement many jackup

rigs operate with a barge type of hull., Hence this kind of platform|is

The main target of this investigation is the determination of a
reliable prediction method for surface platforms with conventional ship-
type or barge-type hulls, operating in regular oblique seas. In future
studies, procedures will be extended to the study of other hull types/ and
other groups of platforms. The important motions of a platform in waves
are coupled heaving, pitching, and surging; and coupled swaying, yawipng,
and rolling. The mean drifting motion and loads are also important wave

effects which will be included in the future,

1
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results for confirmation of the prediction method.

R-1

To solve for the coupled motions, we ought first to determine
forces and moments exerted on the platform oscillating in waves. T

first step in the investigation is to determine the hydrodynamic fg

the
hus the

rces and

moments exerted on a hull oscillating in calm water. The second stiep is to

develop a prediction method for wave-exciting forces and moments on
restrained surface-type model in regular oblique seas. The third s

then to solve for the motions and to make comparisons with experime

In the present study, the first two steps make use of extensio
Frank's work® to the determination of the moment arms of the hydrod
forces exerted on a hull oscillating in a calm water surface, and t

calculation of wave-exciting forces and moments on a restrained hul

a.
tep is

ntal .

hs of
ynamic
0 the

I in

oblique regular seas. The third step involves a study of the hydrodynamic

forces and moments and motions in connection with specific models a

experimental data.

hd
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HYDRODYNAMIC FORCES AND MOMENTS ON CYLINDERS OSCILLATING

IN CALM WATER

1
Frank® has reported on a method of calculating the hydrodyna@ic

forces and moments for swaying, heaving, and rolling cylinders in
below the calm water surface. The method assumes a discrete dist
of two-dimensional pulsating sources on the submerged cylindrical
where the source intensities are determined by satisfying the kin

boundary condition on the cylindrical surface.

The potential thus determined gives us the hydrodynamic pres

distribution on the cylindrical contour in the form .

(m) (m) (m)

p = P, cos wt + P sin wt

where m = 2,3,4 (sway, heave, roll). The hydrodynamic forces an

that are determined by integrating the pressure distribution cons

and

ribution

contours,

ematical

SuUre

moments

st of an

inertial part, which is in phase with the acceleration of the oscjllation,

and a damping part, which is in phase with the velocity of the oscillation.

The component forces and moments are formulated as shown below.

Inertial Force Damping Force
Vertical force F = p(a) dy F = Sald ‘
due to heave Hr Jé r ’ Hi JE P Y
= _ 2 [ _ (2
Lateral force For JE p, dz »  Fg; -JE P dz

due to sway

: ) _[ (2 _ [ o2
Longitudinal roll- Mo j; P, (y dy+z dz) , Mg ’Jﬁ Py (y

ing moment due

~ to sway

Lateral force due F, =/[ - p(4)dz F,. = - p54)
to roll Rr jz r ’ Ri j;

Longitudinal roll- M, = p(4’[y dy+(z-2z.) dz] , M. = p!“[(y
ing moment due Rr JE r o ORI ./; i
to roll

dy+z dz)

dz

dy+(z-zo)dz]
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in these formu!ations-, z, designates the coordinate of the center of
rotation G in the z-axis, as shown in Fig. 1A. The moments Mg, and
Mg; are about the origin 0, whereas Mpr @and Mp; are about the center

of gravity G . The forces and moments follow the sign convention of the

right-handed coordinate system.

From the inertial and damping forces (moments), we define thL added-
mass coefficient, the added-moment-of-inertia coefficient, and thl damping-
force(moment) coefficient. These are represented in dimensionleét form,

In the case of sway and roll, it is necessary, in addition, to define the
added moment arm and the damping moment arm which relate to the moment and
force of the inertial and damping parts respectively. It is convenient to

represent all these in the table shown below, where B = beam an

T = draft.

Heave Sway R?ll
inertial force FHr FSr rRr
damping force FHI FSI FRI
inertial moment Mg, HRr
damping moment MSI MRI

F F

o Fue o Fse
added mass oV me U "
added moment of ’ mé' = LRE

fnertia .

Fui Fsi

damping force NH =V Ns =U

coefficient
damping moment M i

coefficient m’;' mg’ NR =5
added-mass CH = CS =

coefficient pg8° o572

8 2 X

added-moment-of C, = B
~inertia R p~"T4‘

coefficient N N
damping force 6H = ':7 5S = ir

parameter pw§B° pw T
damping moment b, = —1

parameter R 9‘7% T4

2 M £ M

added moment _Sr _ _Sr Rr Rr

arm T FsrT T FReT
damping moment _'eS_i - M zRI e

arm T T T R,
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In the table on the previous page , V, U, and Q designate, respectively,

the heave velocity amplitude, the sway velocity amplitude, and the

angular velocity amplitude. The moment arm induced by rolling mot

roll

jon is

taken from the center of rotation. The moment arms induced both by roll

(pr » 2g;) and by sway (45, , £s;) indicate the positions of the
forces applied, these are positive if the applied force is below t

lateral

he center

of rotation G 1in the case of roll, or below the origin of the co%rdinate

0 for swaying motion.

The hydrodynamic forces and moments thus obtained are two-dim
The strip method serves as a bridge in extending two-dimensional ¢

to calculation for the three-dimensional platform configurations.

ensional.

alculation
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- in the body coordinates, where

|

WAVE-EXCITING FORCES AND MOMENTS ON A RESTRAINED\
BODY IN OBLIQUE SEAS S

Grim®s two-dimensional method®>® is based on the‘assumpélon tﬁat the
disturbance of an incident wave caused by the ship's body is repre‘ented by
the potentfial used in describing the water flow around the body,-wnen the
body is oscillating harmonically in the calm water surface. This potential,
together with the incident wave potential, constitutes the potentiél that

describes the flow around the body under restraint in waves. !

In the present study, we select, for the disturbance, the pote%tial
used by Frank'. His method enables us to compute hydrodynamic forces and
moments not only for the non-Lewis cylindrical form but also for the widely

varying configurations of ocean platforms of the semi-submersible type.

the

W

In order to introduce the strip method by Grim* we first defin

coordinate system and incident waves.

Let 0-XYZ and O-xyz be the right-handed rectangular coordinate

systems, as illustrated in Fig. 1B. Coordinate planes O0-XY and O-xy lie
on the calm water surface, and the Z- and z-axes point vertically upward,

The center of gravity of the body , G, lies on the z-axis. Llet th
positive Y-direction. Then the wave profile is

Incident wave heading be designated by p and let the wave progres% in the
h = acos (v-wt) i

in the space coordinates, and '

h = a cos (vy sin p+vx cos p-wt) (2.1)

wave amplitude

<
]

wave number (w?/g)

€
1]

circular wave frequency
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Now, suppose two vertical control planes cut the body at x and
x + dx ; and consider the wave motion within the fictitiously con%lned
domain. The wave equation (2.1) can be interpreted by noting that the term
Vy sin b determines the wave form in the two-dimensional domain, Lnd that
the term vx cos K represents the phase shift of the wave betweenllocationé
x=0 and x = x , Cutting the whole body by many vertical contrbl planes
such as are demonstrated above, we can apply the strip method, or *he
cross-flow hypothesis, in each plane. That is, the three-dimensional forces
on the restrained body, induced by the oblique waves, can be determined
approximately by summation of the two-dimensional elementary forceg induced
by the waves on each strip. \

The potential of the wave Eq.(2.1) is represented by |

a v
P = %T e % sin (vy sin p+vx cos p-wt)

or, conveniently, by the wave potential per unit amplitude of the incident

wave

% o(x,y,z ; t,p) = -% eZ sin (vy sin p+ux cos p-wt) C(2.2)

The terms Vy sin W and vx cos K have physical meanings intérpreted

as aforementioned,

The wave potential is broken down into two component potentialﬂ, of
the form |
|
% 9, = % e’? sin (vy sin p) - cos (vx cos p-wt) | (2.3)
% ¢, = % e’? cbsb(vy‘sin ) © sin (vx cos p-wt) (2.4)

, e 1
Since the potentials 3 @o and 3 P

e are, respectively, the odd and

even functions of y , the odd function % P, is applied to the asymmetric

motion of water about the z-axis in the yz-plane, and the even functijon,




[

s ¢e , is applied to the symmetric motion of water about the z-axis,

Therefore the odd function will be employed as the potential causing the
sway force and roll moment on a cylinder section in the beam sea, and the

even one wWill be used as the potential causing the heave force on the section.

The disturbance potential must be added to the wave potential derived
above, to account for the actual presence of the body. The disturbance Is
mathematically expressed by a distribution of pulsating sources over the
two-dimensional section surface. The potential used by Frank® is employed
as our disturbance potential. Since the disturbance depends on the
incident wave and on the position and form of the body sections, It can be

written

@(m)(X.y.z st = Ry _];'Q('“)(S) . 6ly,z ; M, ¢)e! (VX cos u-wt)ds]
| * 4.(2.5)

In this equation , m designates the mode of excitation (m-2,3,4 = sway,
heave, roll), and the expression Q(m)(s) designates the unknown complex
source intensities distributed along the section contour C . The expression
depends on the mode of excitation, the geometry of the section, and the
Incident wave. The expression G(y,z ; M,0) is the pulsating source
potential of unit intensity at the point (N,C) in the lower-half yz-plane

of Fig., 1A. The term t:':hJx Fas

due to the position of the section x where the disturbance occurs in

in Eq. (2.5) represents the phase shift

response to the oblique incident wave of wave number v and incidence U .

Since Q(m) and G are the complex source intensity and source

functlbn, respectively, let them be denoted as

-+

o™ g, ol

G

1l

G, + i(-Gi)
where 1| = /:T , and where Qsm) and ng) are real and imaginary parts

of Q(m) , and Gr and --GI are real and imaginary parts of G .
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Equation (2.5) is then changed to
3(m jc (Qﬁ"‘)crw_g"‘)c,) ds
. cos (vx cos p=-wt)
-fc(-Qi"‘)Gimg'“)sr) ds

+ sin (vx cos p-wt)

(2.6)

The ultimately required potential which describes the water flow

around the restrained body in the strip region is therefore obtain
superimposing the wave potential (2.2) and the corresponding distu
potential (2.6). Specifically, the potentials are written accordi

mode of excitation (i.e., sway, heave, and roll), as

Y =) B |

QS = $\¢l4 5 %
Y - N |

QH ® + - ¢e
= s 1

@R $1%) 4 3 wo

ed by
rbance

ng to the

(2.7)

The potentials QH » & , and QR satisfy the following four conditions,

out of the five required6

(1) The continuity of the liquid in the whole domain
(2) The linearized free-surface condition
(3) The radiation condition

(4) The deepwater condition

The fifth condition to be satisfied is the kinematical boundary ca

the body surface (no flow through the surface of the restrained bg

10

ndition on
dy). For
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R-1

F, F, F '
"ag'=ff?ﬂ' ydx-—-ﬂ-coswt-&-ﬁstnwt

#( ) +(C') cos (wt + €c

-F
17 CH .
efCh = tan o ’

FCr

Fa j‘f p F. Fr:
S i
5 = -?dzdx——gﬁcoswt-f-—g—sinmt

F Fr :
;J(.%].[)z + (—2!. ° cos{wt + ef'ﬂh)

-F .
®fTh = tan" —L- ’

FT\"

Fo
— _/‘f-—-xdzdx-—§—tcoswt+ XL sin ot
LC

F._ 2 F.. 2
= xXr X1
J( )+ () cos(ut + ¢
-F
-l xi
e = tan A ;
fxh ’
A FXr'
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F .}r.}r P F F
H g Yi
-a- -—a-XdeX——a-—COS Wt + ———— a sin wt

F, 2 F,. 2 ‘
?J(-—a‘{’—r)' + (';laﬁ) cos{wt + efléh)

= tan" -Jk-

with
er

e

€eon =

F F
= ff—-[vdv+(z-z)dz]dx—-‘ﬂ-cosmt+_°’d.
LC

a

F ¥
=‘/(-—;PI-)2 + (-—‘gi)a cos(uwt + €

with € = tan™ Pt

where L means that the integration is executed over the length of t
C means integration over the contour of a section, and ¢ designates
phase difference between the wave maximum at the origin and the for

moment maximum. Positive € indicates phase lead of the force from

a

symmetrical about the y-axis, be calculated by taking the strip in
direction parallel to the x-axis. The positive signs of the forces
moments take the positive directions of the right-handed coordinate

as shown in Fig. 1C.

The numerically calculated examples and the comparison with t
mental results were reported earlier.® The reliability of the pres

diction method was confirmed.

13
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sin wt
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COUPLED EQUATIONS OF MOTION IN OBLIQUE SEAS

The coupled heaving and pitching motions and the coupled swaying,
yawing, and rolling motions are considered. The right-handed coordinate
system Is shown in Fig. 1C. The body coordinate system is designaIed by
O-xyz . In this system, the 0-xy plane lies on the calm water erface
and the z-axis passes through the center of gravity G . The oscillatory

motions are about the center of gravity G as shown in Fig. 1C.

COUPLED HEAVING AND PITCHING EQUATIONS

The heaving and pitchfng equations are written as’ *®

(-u?ﬂcc+iWN€c+BgC) E(w)'- (-u?MWC+in¢g+B¢€) ¥ (w)

= Fyr - F Fyi
(3.1)

The heave-exciting and pitch-exciting force and moment are obtained from

Eq. (2.10). The symbols C(®w) and Y(w) are the Fourier transforms of

¢(t) and ¥(t) the heave and pitch motions, respectively, with the

expressions

€ = ¢ +ig and Vo= oy o+,
and
€, .
eGh = tan™t Ei and e#h = tan™! %i
15
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The positive e's mean that the phase of the motion maximum leads the

wave maximum at the origin.

The coefficients in the left-hand side

= 4y '
MCc = _[;1 (m-l-mH ) dx
N £ N, dx
€C = H
L,

Bee = P9 f;” 2y, dx

=4

_ - Ly 14
e = My [1,1 "H

Yem Yo T,

B

2

=k 2
N,, = N, x° dx
TR

- £ 2 - =
wa = pg.[z1 2y, X dx = pgV GM¢

where

m = sectional mass of the hull

V = total volume of the immersed hull

Aw = waterplane aresa
Yy = half-beam of a section in the waterplane
M, = longitudinal metacentric height

¥
l¢ = longitudinal moment of inertia of
.axis through G

16

= pV + Aa m';l dx
-4

= pg A,

x dx

f’é N, x dx

oy = pg_l;fz 2y, x dx

=|¢+f!3ml_'l'xa

are defined by the formulas

dx

the hull about the trinsverse
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The two-dimensional added mass and damping force coefficient for h%aving
(i.e., mé' and NH) are determined by the method described in the first

section of this report.

Equations (3.1) are reduced to the matrix equation

{(Bcc'“’a“cg) + ingC:} -{(BM-uPM ) + '"’NM}‘ '%" _ ';Eag’
L-{(B%'GPM%) L TP R (R inW}.- ng | “§~
Foo= Fort 1 (-Fy)
Fy = Fyo+ 1 (-Fyp)
(3.2)

Solving for the motions C/a and ¥/a , we determine the dimensionless
motion parameters (/a and @/va which give us the amplitude of |the
motion and the phase difference between the wave maximum at the origin 0

and the motion maximum,

COUPLED SWAYING, YAWING, AND ROLLING EQUAT!ONS

) To derive coupled swaying, yawing, and rolling equations, which wili
be consistent with our coordinate system, we consider the dynamic
equilibrium equations for each mode of motion.*’? Taking a form|similar to

Eqs. (3.1), these equations of motion in the frequency plane are|written

(-0PMpge ToNg) Ti(w) + (-oPM vl ) R(w) + (-0°M ;imNW) F(o)| = Fy

XN Xy h
(~aPhy rion, ) T(w) + (-oPM e ) R(0) + (-PHy +ioNg ) F(e) | = Fy
(-o?M +inn(P) MN(w) + (-3 M +|wN ) (W) + (-uPM +'wN¢P‘P qxp) qw) = FﬁP :
(3.3)

17
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where the complex exciting forces and moments on the right-hand side are

determined from Eq. (2.10) in the expressions

P o= Fo + 00Fg) 5 Fy = Ry + 1R 5
ﬁp = F¢r + i('FQI)

and the complex motions are written in the forms

n = ﬂr + lﬂ‘ P X=X+ ix| ;e = @+ i@i

th = tan

?;
ecph = tan (P

The positive e's mean that the phase of the motion maximum leads

maximum at the origin.

the wave

The coefficients in the left-hand side of Eq. (3.3) are determined by

the formulas; that is,

MT\T] =!j’a (m+mS”) dx = pV +f£!'3 ms” dx
1 -4

Ny
N =/, 7 Ns o
- Al

=
I

_ Ly 14

1) MﬂX -_!;1 mg X dx
%

X1 N.ﬂx _f-h Ng x dx

18
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s # i
e Ly i

1t

‘PX f;’av——xdx

Rr
N
N = fa __R X dx
()8 L
’ -4y Ri

MT\‘P = _[ﬂfa msl'(i:-é—(;-i-zsr) dx
N =f!{:’7g Ng (06+ 4 ) dx
-4
: —'f % (iOGHl ) dx
s N

-k 3
N " _'[El NS(iOGi-JZSi) x dx

- +j£5 Y

-4
NCP:P = '-].:3 NR dx
By ~ P9 o,
where pV = total mass of the ship
.]9
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4#0G = distance between the origin and the center
gravity G. The + sign is taken for G abov
and the - sign is taken for G below O.

GM_ = metacentric height for roll.

. 1, = moment of inertia of the ship about the
vertical axis through G

The above coefficients are easily calculated by the two-dimensiona

mass and damping coefficients, etc., described in the first sectio

Equations (3.3) are reduced to the following matrix equation:

-

|, = moment of inertia of the ship about the
longitudinal axis through G

(=0 Myt F i) (=02 M e TN, ) (=P M TN )
(-w"‘nnxnuwnx) (-maMXXHwNXX) (-uPMWnuw(PX)

. ‘2 '
-.(-U)QMTFP-H wNTlcp) ('“’ngcp’ anxcp) (Bw-w qup+ inW)_

10— =
31 | F

a a

| |s

.G P

a a

ol | F

L.a .l . a

of
d 0,

1 added

n.

1=

(3.4)

From the solution of Eq. (3.4), we obtain the dimensionless parameters for

sway, yaw, and roll; that is,

|l

20
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MOTION OF A SHIP-SHAPED PLATFORM IN OBLIQUE SEAS

MODEL AND MODEL TEST CONDITION

We consider the motion of the Series 60 ship model” in obliq
Tasal reported on the vertical and lateral coupled motions of the

model in beam seas. This model is an appropriate one for our inv

since it has been studied theoretically as well as experimentally|

principal particulars and the test conditions are shown in the ta

MODEL PARTICULARS

Lép =3.0m Cy = 0.70
B=0U428m cp = 0.710
L/B = 7.0 C. = 0.985
D=0.267m X
T=0171m Co = 0-785
W = pgV = 153.74 kg ' QB = 0.013 m fore
KB = 9.02 cm

(Radius of gyration of pitching in air ny = 0.24 Lgp even keel;
bilge keel and propeller; with rudder.)

TEST CONDITION

GM_ = 2.78 cm '

P ‘ KG = 14.66 cm
b = 0.0770 8, = 0.o00kh (1
g = 0.0314 m aft, even keel T=0.171m

0G = 0.02L4k4 m

Natural rolting period T¢ = 1.61 sec
Natural pitching period Ty = 1.00 sec
Natural heaving period Tg = 1,03 sec

21
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‘trends in Fig. 2. The response motions in heave and pitch are ill\

the heaving-force maxima occur in beam seas. The maximum force in

R-1

In the strip calculation described in the previous sections, thirteen

transverse strips were taken (i.e., the following station numbers:

2, 4, 6, 8, 10, 12, 14, 16, 18, 19, and 20). For the calculation of

Ol I’

two-dimensional hydrodynamic forces and moments on each strip, eleven

source points were taken for heaving and swaying motions while 20 source

points were used for rolling motions.

In the following discussfon, we consider first the calculated

for vertical plane motions, then the lateral coupled motions.

COUPLED HEAVING AND PITCHING MOTIONS

resuits

We refer to the vertical coupled motions, Eq. (3.1). The heaye and

pitch inertial and damping coefficients are plotted against the frequency

parameter VT in Fig. 2; and the heave- and pitch-exciting forces

and

moments on the ship model are plotted in Fig. 3 as functions of waye-to-ship

length ratio A/L in beam seas (p = 90°).

Both heave and pitch inertial

coefficients and both heave and pitch damping coefficients have the same

as functions of wave-to-ship length ratio in Figs. 4A and 4B. The
both motions occur at their natural periods. The predictions are

be in good agreement with the experimental results.”

Next we examine the coupled motions of the ship model in obli
with wavelength to ship length ratios 0.5, 1.0 and 2.0. The heave
pitch-exciting forces and moments are shown in Figs. 5A and 5B as

of incidence P and wavelength to ship length ratio A/L . |In ge

seas increases as the wavelength increases. On the contrary, pitc
moment minima generally occur in beam seas. The location of the i
k where the maximum moment occurs moves toward head sea or follow

180° or 0° as the wavelength to ship length ratio increases (Fig.

istrated
peaks of

seen to

lue seas,
- and
functions
neral,
the beam
hing-
hcidence
ing sea

5B) .

Referring to Figs. 6A and 6B, we consider the heave and pitch resppnses as

functions of A/L

and W . Since the heaving and pitching naturpl periods

are coincident with the wave periods of A/L = 0.55 and 0.52, respectively,

we may, for explanatory purpose, take the heave and pitch curves fpr

22
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.7A, 7B, and 7C. The swaying and yawing inertial coefficients and

" roll motion, these assumptions have not been found adequate for pr

R-1

A/L = 0.5 roughly as the resonant heaving and pitching motions. By this
assumption, the resonant heave and pitch are reduced to the functipns of
the incidence K only. The maximum of the resonant heaving motiop occurs

in the beam seas, while the maximum of the resonant pitching motion occurs

in the quartering seas.

The heave motion is greatest at the resonant condition, but tl

ﬁof_jecéssarlly true of pitch motion.

COUPLED SWAYING, YAWING, AND ROLLING MOTIONS

Referring to the lateral coupled equation (3.3), we observe t
calculated results of the inertial and damping coefficlents which

defined in the Appendix, as functions of frequency parameter VT

swaylng and yawing damping coefficients behave in a similar manner
functions of the frequency, as should be expected (Fig. 7A). The
inertial coefficient Is practically constant over the frequency ra

determining

- ) by 11
|cp MW [fh mg dx

nis is

he
bre
in Figs.
the
as
rolling

nge, - In

M

an approximation for M was obtained from the relation T, %~ 2F P
' PP Bepep

P
(Fig. 78B).
Thus far, each hydrodynamic force component has been adequate

described by means of linear inviscid theoretical analysis. In th

damping moments of conventional ship forms.,” For roll motions, Ta
shown that a reliable description of the roll damping moment is gi

1y

e case of
edicting
5ai  has

ven by

M
e pep -
Nep = @ ‘”(P(51+52 Aq,lcP')
. where 6,,6, = coefficients determined from the apalysis

of roll extinction curves (see page 21)

23
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natural rolling frequency

A¢ = Qw/w¢'; w, = wave frequency
|9l = roll motion amplitude

The linear damping moment due to wave-making only Is compared in F

g. 7B

with that predicted by this non-linear representation., Roll damping due to

wave-making is apparently much less than that due to linear and non-linear

viscous effects, for conventional ship forms. The coupled inertia

and

damping coefficients between roll and sway and between roll and yay are

i1lustrated in Fig. 7C. The roll - sway coupled coefficients are not

identical with the sway = roll coupled coefficients; nor are the cqupled

coefficients from roll to yaw and yaw to roll identical. However,

have the same trend.

As the second step in the discussion of Eq. (3.3), we next con

they

sider the

sway-, yaw-, and roll-exciting forces and moments plotted against the wave-

to-ship length ratio A/L in beam seas (b = 90°).

In Figs. 8A and 8B, it

'i{s seen that both the sway force and the roll moment approach asymptotes as

wavelength A increases, while yaw moment approaches its minimum {imit.

The sway force and roll moment decrease as the wave frequency incregases.

Contrary to this, the yawing moment increases as the frequency incnreases,

When non-linear roll damping moments are included, the solutign of

Eqs. (3.4) is not quite sosimple as for the linear case. Replacin
with N;w given by
N¢¢ = = w¢(61+va 85 A¢ Ve )

g N¢¢

then equations (3.4) can be solved by iteration methods for J . %t , and

a

va

depends on the value of va wused in the expression for N;¢ .

N

2. as a function of A/L or equivalently , Atp . However, the solution
Finst, the

value va = T/52.5 was used, which is the mean of the wave charactieristics

for which the motions were measured.’

24
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"and with the wave slope Va = T/52.5 ., The period of the wave M/

Having solved for the coupled motions (3.4) by applying the g

information, we represent swaying motion as a function of wave pe
s p g

bove

fod , T, ,

yawing motion as a function of wavelength-to-ship length ratio , A/L , and

the rolling motion as a function of its tuning factor , Aw', in Fi
9B, and 9C.

The swaying amplitude is compared with the experimental resul
humps of both swaying amplitude and phase angle are ascribed to tJ
effect.” The yawing motion , Ve ? also fluctuates near the natun
period. To understand the coupling effect, we compare the yawing

with the uncoupled effect as shown in Fig. 9B.

In general, the yawing motion is negligibly smaili in comparis
the other two motions in beam seas. The calculation, however, rey

the yaw amplitude ratio increases as the wavelength A/L in

va
above the natural roll period. This phenomenon must be checked ex

Rolling motion is also in good agreement with the experimentd

as shown in Fig. 9C. We should recall the introduction of the non

-damping coefficient with va = 7/52,5 there in the solution of Eq.

Finally, the effect of the wave slope va on the rolling mof
beam seas (it = 90°) were investigated; the coupled Eqs. (3.4) were
for different given wave slopes (see Fig. 9D). 1t is seen from th
that the wave slope has a large influence on the rolling motion pr

near resonance.

So far, we have discussed the motions of the ship model in be
(0 = 90°). We come now to the lateral coupled motion of the ship
oblique seas with wavelength to ship length ratio A/L = 0.5, 1.35

is coincident with the naturai rolling period.

The sway-, yaw-, and roll-exciting forces and moments are shg
Figs. 10A, 10B and 10C as functions of incidence i and wavelengt
Similarly, the response motions sway, yaw, and roll are illustrate
11A, 118, and 11C as functions of b and A/L .

The sway-exciting force maxima occur in beam seas and increas

wavelength becomes longer.
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The yaw-exciting moment maxima generally occur in quartering seas,

while the minima occur in beam seas. The roll-exciting moment maxima also
occur generally in quartering seas and the number of fluctuations of the

moment curves diminishes as the wavelength increases. ,\.

All the lateral exciting forces and moments vanish in head a%d'ih
following seas.

1
| |
The sway and yaw response motions in Figs. 11A and 11B have Timilar

trends as the corresponding wave exciting force and moment.

|

The roll response curves are flattened out in comparison with the
wave-exciting moment (Fig. 11C). It is seen from the figure that'the
resonant roll motion (A/L = 1,35) is predominantly higher than thJ other
motions (A/L = 0.5,2.0) although the roll-exciting moments for A/L = 1.35
and 2.0 are, in effect, not different at all. This explains the character-
istic behavior of a ship's roll in irregular waves. In other words, the
spectral energy of the roll response motion is mostly distributed jn a

narrow wave frequency band in the neighborhood of the roll natural|frequency.

26
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MOTION OF JACKUP RIG MODEL IN OBLIQUE SEAS

MODEL AND MODEL TEST CONDITIONS \

We consider the vertical and lateral coupled motions of a jackup rig
model in oblique seas. The jackup rig model used in our investigation was
selected because it was representative of recently constructed drill-rig
ocean platforms. The principal particulars and the tested conditi&ns are

given in the tables below.

MODEL PARTICULARS

Length , L 30.7 in.
Beam , B 20,45 in.
Depth , D 2,98 in.
Draft , T 1.93 in.
Displacement , A : 43,60 1b
Hull

Weight , W 34.4 1b
LCG ]

VCG, above waterline 3.24 in.
Pitch gyradius 8.76 in.
Roll gyradius 6.31 in.

(Section forms: same rectangular section used throu+hout.)

Legs
Length 43.8 in.
Total weight ' 9.12 1b
Weight/ft 0.6L42 1b/ft
Diameter 1.75 in.

27
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TEST CONDITIONS

Legs Up
Natural pitching period 1.085 sec
Natural heaving period 0.905 sec
Logarithmic decrement for pitch 6, = 0.566

Legs Half Down

Natural pitching period | 1.014 sec

Natural rolling period 1.123 sec
Natural heaving period 0.966 sec

. Legs Full Down

Natural pitching period 1.328 sec

Natural rolling period 1.654 sec
Natural heaving period 1.002 sec

TEST PROCEDURE

The heaving and pitching motions of the jackup rig model in he4
were measured in Tank No. 2 at Davidson Laboratory. The motions of
model with its legs up, half down, and full down were investigated.
motions of the model with the legs in waves simulate various operati
stages of a drill-rig platform in waves before and while the legs ar
lowered at an oil-drilling location. Photographs of the model are s
in Fig. 12,

HEAVING, PITCHING, AND SURGING MOTIONS

We consider only the motion of the jackup rig model with legs up

since our analytical method as so far developed is not yet suited to

calculation of the model motion with legs down.

28
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In the case of a barge-type hull, it was found necessary to include

surge motions, together with heaving and pitching. Since the barge

has

fore and aft symmetry, pitch, heave, and surge motions are in principle,
indistinguishable from roll, heave, and sway. Consequently, pltch|and
surge hydrodynamics were calculated from Egs. (2.10) for roll and sway,

Hydrodynamic forces due to heave were evaluated with lengthwise strips.

The calculated heaving motions of the model are compared with the

experimental values in Fig. 13A.
s good enough. The prediction of pitching motion is also compare

For all practical purposes, the agreement

with

the experimental results, in Figure 13B. The effects of theoretical and

experimental dampings are also shown in the figure, where the formula used

to define the experimental damping moment is

Nyy = 8 m oyt My /M

where 6, = coefficient determined from the extinction curve of
' the model

m¢ = natural circular pitching frequency

M,, = pitching inertial moment coefficient (see second

A section of this report), determined theoretically

The prediction using the empirical damping moment is also seen to he in

reasonably good agreement with the experiment (Fig. 13B).

For the surging motion, there are no experimental data present
available, but the calculation is shown in Fig. 13C. It is very in
to note that the coupled effect appearing in the motion is signific

Is observable in the behavior of the curves of amplitude and phase
natural pitching period.
Again using lengthwise strips, we investigated the surging and

motions in quartering seas (p = 45°), These motions are illustrate
14A and 14B. Both surging and pitching motions are generally small

teresting
ant., It

near the

pitching
d in Figs.

er than

the motions in head seas, but the curves show trends similar to those for

head seas.
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HEAVING, SWAYING, YAWING, AND ROLLING MOTIONS

motions of this jaékup rig model, the calculation of the motions

carried out for beam seas (1 = 90°) and quartering seas (p = 45°)

s
The

1
|
Although we have not obtained the experimental data for the iolling
a

vertical coupled Eqs. (3.1) with transverse strips are utilized far
determining the heaving motion in beam seas (b = 90°). The lateral coupled

Eqs. (3.3) are solved to determine swaying, yawing, and rolling mdtions for

these cases. The heaving motion of the model in beam seas is illu

trated

In Fig. 15A. The motion amplitude reaches the maximum in & shorter wave

than in head-sea motion. The swaying motion is shown in Fig. 15B.

tendency of the motion is similar to that of the surging motion of

experiment, and the natural period cannot be pin-pointed, but the

should occur near the natural period, This is expected from the f
investigation of pitch and surge in head seas. The rolling motion
in Fig. 15C. It is evidently larger than the pitching motion. It
noted, however, that the motion was calculated by employing only tkf
making damping. Including viscous damping as determined from a rol
test should reduce the predicted roll motion, but further calculati

additional experimental measurements.

The lateral motions in oblique seas (u = 45°) are illustrated

16A, 16B and 16C. The swaying and rolling motions are smaller than

-
E

The
the

_model in head seas. The natural rolling period was not measured ip the

luctuation
regoing

is shown
should be

e wave-
l-extinction

ohs await

in Figs.

those

in beam seas, as might be expected. The yawing motion amplitude is

certainly much smaller than the other two motions, and increases as

wavelength-to-ship length ratio A/L increases.
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" variety of practical effects in this prediction capability. Som

CONCLUSIONS AND RECOMMENDATiCNS

An analytical procedure has been derived and evaluated for p
motions in six degrees of freedom for floating vehicles with no fi
speed. This procedure was appliied to conventional ship-type hull
barge-type hulls representing jackup drill rigs. Predicted resul
found to be in good agreement with those corresponding measured r

that are presently available.

The analytical procedure is based on the use of two-dimensia
theory to represent the hydrodynamic forces and moments acting on
These loads are assumed directly proportional to sinusoidal wave
at each frequéncy, and the flow is assumed inviscid except in the

roll for conventional ship forms and in the case of roll and pitg

redicting
orward

s and to
ts were

esults

nal strip
the hull.
amplitude
case of
h for

barges. In the latter case, viscous linear damping moments are qequired,

but in the former case, viscous linear and quadratic damping mome
found necessary. The viscous damping moments were characterized

from the results of roll or pitch extinction measurements when ay

Some further experimental work is required to Increase the ¢
reliability of the analytical procedures derived here. At preser
the procedure is considered sufficiently reliable for conceptual

studies of motions and loads for ocean platforms.

nts were
empirically

ailable.

egree of
\t, however,

design-stage

In a continuing effort to derive useful reliable design-sta

e techniques

for ocean-platform analysis, future studies will be carried out to include a

are:

(1) Hydrodynamic forces on vertical cylindrical legs'
(2) Dynamic constraints due to mooring lines

(3) Calculation of wave-induced and motion%induced
bending moments
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In connection with the first of these recommendations, some experimental
work has been carried out. Results are shown in Fig. 17, with wave period

extrapolated to full scale.

The procedures will be further extended to include other types of
ocean platforms such as semi-submersibles and buoys. Since proposed buoy
shapes vary widely, the results for mathematical shapes from Refeances 10

and 11 may not be of practical use.

Another effect that has practical importance éppertains to the drifting
motion and loads which can be calculated by means of a straightforward

extension of the procedure already developed.
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Appendi x
DIMENSIONLESS FORCE COEFFICIENTS

The fnertial and damping coefficients and wave-exciting forc
moments are represented In dimensionless forms, as shown in the t
below.® But the coupled inertial and damping coefficients betwee

and pltch, and sway and yaw, are not given.

" TABLE A-1
Mode of Motion and Force Inertial Coefficlent Damp
. : : M
‘surge - .surge -;%5
M
- ~m
sway - sway v
. : M
heave — heave ‘ <&
X oV
M
roll = roll -55%;
pVB
M
pitch = pitch o . =
4 pVL
yaw — yaw : . A KX
Y puL®
Yoy
roll *‘sway ~ VB
M
- Bl
sway = roll VB
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Appendix

S .am'i
bles

Y heave

Nee VoL
pgv
Ny VgL

pgv

Neo VoL
pgv

Nexo V9B

pgvB

N /a8
pgVB

[cont'd]

ng Coefficient
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Table A-1 (cont'd)

Mode of Motion and Force Inertial Coefficient

M
- X
roll - yaw SVBL
fXQ_
yaw = roll SVBL
TABLE A-2

Mode of Motion

Fe

pgvalBT
_n_
pogvalBT

surge

sway

_Fc

heave a
pgalLB

e

roll 3
pgvalB™T

pitch

yaw
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Wave-Exciting Forces

Damping Coefficient

Ngz‘VgB
pgVBL

N; ]ég‘
pgVBL
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